Interpretable Cross-Subject EEG-Based Emotion Recognition Using Channel-Wise Features
نویسندگان
چکیده
منابع مشابه
Exploring EEG Features in Cross-Subject Emotion Recognition
Recognizing cross-subject emotions based on brain imaging data, e.g., EEG, has always been difficult due to the poor generalizability of features across subjects. Thus, systematically exploring the ability of different EEG features to identify emotional information across subjects is crucial. Prior related work has explored this question based only on one or two kinds of features, and different...
متن کاملAn Optimal EEG-based Emotion Recognition Algorithm Using Gabor Features
Feature extraction and accurate classification of the emotion-related EEG-characteristics have a key role in success of emotion recognition systems. In this paper, an optimal EEG-based emotion recognition algorithm based on spectral features and neural network classifiers is proposed. In this algorithm, spectral, spatial and temporal features are selected from the emotion-related EEG signals by...
متن کاملCross-Subject EEG Feature Selection for Emotion Recognition Using Transfer Recursive Feature Elimination
Using machine-learning methodologies to analyze EEG signals becomes increasingly attractive for recognizing human emotions because of the objectivity of physiological data and the capability of the learning principles on modeling emotion classifiers from heterogeneous features. However, the conventional subject-specific classifiers may induce additional burdens to each subject for preparing mul...
متن کاملEEG-based Emotion Recognition pdfsubject
In the area of human-computer interaction information about the emotional state of a user becomes more and more important. For instance, this information could be used to make communication with computers more human-like or to make computer learning environments more effective. This thesis proposes an emotion recognition system from electroencephalographic (EEG) signals. Emotional states were i...
متن کاملEEG-Based Emotion Recognition Using Frequency Domain Features and Support Vector Machines
Information about the emotional state of users has become more and more important in human-machine interaction and braincomputer interface. This paper introduces an emotion recognition system based on electroencephalogram (EEG) signals. Experiments using movie elicitation are designed for acquiring subject’s EEG signals to classify four emotion states, joy, relax, sad, and fear. After pre-proce...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Sensors
سال: 2020
ISSN: 1424-8220
DOI: 10.3390/s20236719